You are currently browsing the daily archive for 2010/03/26.

  1. {\mathbb{R}^3} erdvės vektoriams {x=(3,0,-1)} ir {y=(1,2,3)} rasti:
    1. vektorių {3x-y};
    2. skaliarinę sandaugą {x\cdot y};
    3. euklidinius ilgius {\|x\|_2} ir {\|y\|_2};
    4. euklidinį atstumą {\rho_2(x,y)}.
  2. Tegul {a,b,c\in \mathbb{R}} ir bet kuriems {x=(x_1,x_2)\in\mathbb{R}^2}, {y=(y_1,y_2)\in \mathbb{R}^2} tegul

    \displaystyle  \begin{array}{rcl}  		q(x,y)=ax_1y_1+bx_1y_2+bx_2y_1+cx_2y_2. 	 \end{array}

    Su kokiais {a,b,c\in\mathbb{R}} funkcijai {q(\cdot,\cdot):\mathbb{R}^2\rightarrow \mathbb{R}} galioja savybės:

    \displaystyle  \begin{array}{rcl}  		&q(x,x)>0, \text{ jei } x\neq 0,\\ 		&q(x,y)=q(y,x),\\ 		&q(x,\lambda y+\mu z)=\lambda q(x,y) + \mu q(x,z). 	 \end{array}

  3. Tegu {x,y\in \mathbb{R}^d} ir {\|\cdot\|} yra norma erdvėje {\mathbb{R}^d}. Įrodyti, kad

    \displaystyle  \begin{array}{rcl}  		|\|x\|-\|y\||\le \|x-y\| 	 \end{array}

  4. Pavaizduoti erdvės {\mathbb{R}^d} aibes {\{\|x\|_2=1,x\in\mathbb{R}^2\}}, {\{\|x\|_1=1,x\in\mathbb{R}^2\}}, {\{\|x\|_{\max}=1,x\in\mathbb{R}^2\}}
  5. Kiekvienam {n\in\mathbb{N}} tegul

    \displaystyle  \begin{array}{rcl}  	 x_n:=\left(\frac{n}{1+n},\frac{1-n}{n}\right)\in \mathbb{R}^2 	\end{array}

    Naudojant tik sekos konvergavimo apibrėžimą, įrodyti, kad vektorių seka {(x_n)} konverguoja į vektorių {(1,-1)}, kai {n\rightarrow\infty}.

  6. Su kiekvienu {n\in \mathbb{N}}, tegul {x_n:=(e^{-n}\sin n, 	e^{-n}\cos n)\in \mathbb{R}^2}. Ar vektorių seka {(x_n)} turi ribą? Atsakymą pagrįsti.
  7. Tarkime, kad vektorių seka {(x_n)} konverguoja į vektorių {y}. Įrodyti, kad bet kuris jos posekis {(x_{n_k})} taip pat konverguoja į vektorių {y}.
  8. Parodyti, kad jei {\|x_n-x\|_{\max}\rightarrow 0}, tai {\|x_n\|_{\max}\rightarrow\|x\|_{\max}}.

Namų darbai.

  1. Įrodyti, kad bet kuriems {x,y,z\in \mathbb{R}^d} ir {\lambda,\mu\in \mathbb{R}},

    \displaystyle  \begin{array}{rcl}  		&x\cdot x>0, \text{ jei } x\neq 0,\\ 		&x\cdot y = y\cdot x,\\ 		&x\cdot(\lambda y +\mu z)= \lambda(x\cdot y) +\mu (x\cdot z). 	 \end{array}

  2. Įrodyti, kad funkcijoms {\|\cdot\|_1} ir {\|\cdot\|_{\max}} galioja savybės:
    1. kiekvienam {x\in \mathbb{R}^d}, {\|x\|\ge 0};
    2. kiekvienam {x\in \mathbb{R}^d}, {\|x\|=0} tada ir tik tada, kai {x=0};
    3. visiems {x\in \mathbb{R}^d} ir {\lambda\in \mathbb{R}}, {\|\lambda x\|=|\lambda|\|x\|};
    4. visiems {x,y\in\mathbb{R}^d}, {\|x+y\|\le \|x\|+\|y\|}.
  3. Tegu

    \displaystyle  \begin{array}{rcl}  	 x_n=\left(\frac{n+1}{n},\frac{(-1)^n}{n}\right) 	\end{array}

    Rasti (pateikti įrodymus)

    1. {\lim x_n};
    2. {\lim \|x_n\|_2};
    3. {\lim \|x_n\|_1};
    4. {\lim \|x_n\|_{\max}}.
  4. Tarkime, kad {\mathbb{R}^d} erdvės elementų seka {(x_n)} konverguoja į nulį, kai {n\rightarrow\infty} ir {\mathbb{R}^d} erdvės elementų seka {(y_n)} yra aprėžta. Įrodyti, kad {x_n\cdot y_n\rightarrow 0}, kai {n\rightarrow\infty}.

Naujausi komentarai

vzemlys apie Rožiniai akiniai
Audrius apie Rožiniai akiniai
Karl apie Time series data aggregation u…
Vytautas Astrauskas apie Matematinio teksto rinkimo tur…
Auksinis kardas apie Drawing national flags on maps…
2010 m. kovo mėn.
Pr A T K Pn Š S
1234567
891011121314
15161718192021
22232425262728
293031