You are currently browsing the tag archive for the ‘vektorinio argumento funkcijos riba’ tag.

  1. Rinkinys {\{(\frac{1}{n},n\in \mathbb{N})\}} yra intervalo {(0,1)} atvirasis denginys. Ar šis denginys turi baigtinį podenginį?
  2. Sukonstruoti tokį skaitų rinkinį kompaktinių aibių, kurių sąjunga nėra kompaktinė aibė.
  3. Tegul {K} yra euklidinės erdvės kompaktinė aibė. Tada egzistuoja tokie vektoriai {u\in K} ir {v\in K}, kad

    \displaystyle  \begin{array}{rcl}  	 \|{u}\|_2\le \|{x}\|_2\le\|{v}\|_2,\text{ visiems } x\in K 	\end{array}

  4. Tegul {K} yra euklidinės erdvės kompaktinė aibė ir {y\notin K}. Įrodyti, kad egzistuoja toks elementas {u\in K}, kad

    \displaystyle  \begin{array}{rcl}  	 \|{u-y}\|_2\le \|{x-y}\|_2, \text{ visiems } x\in K, 	\end{array}

    t.y. egzistuoja artimiausias {y}-ui aibės {K} elementas.

  5. Tegul {f:\mathbb{R}^p\rightarrow \mathbb{R}^q}, {x_0\in\mathbb{R}^p} ir {c\in \mathbb{R}^q}. Įrodyti, kad {f(x)\rightarrow c}, kai {x\rightarrow x_0} tada ir tik tada, kai {\|f(x)-c\|_{2}\rightarrow 0}, kai {x\rightarrow x_0}.
  6. Įrodyti, kad funkcijos
    1. {(x,y)\rightarrow x+y}{\mathbb{R}^d\times \mathbb{R}^d} į {\mathbb{R}^d}
    2. {(\lambda,x)\rightarrow \lambda x}{\mathbb{R}\times \mathbb{R}^d} į {\mathbb{R}^d}
    3. {(x,y)\rightarrow x\cdot y}{\mathbb{R}^d\times \mathbb{R}^d} {\mathbb{R}}

    yra tolydžios.

  7. Tegu {f:\mathbb{R}^2\rightarrow \mathbb{R}} ir

    \displaystyle  \begin{array}{rcl}  	 f(x_1,x_2)=\frac{x_1^2x_2^2}{x_1^2x_2^2+(x_1-x_2)^2}. 	\end{array}

    Parodyti, kad

    \displaystyle  \begin{array}{rcl}  	\lim_{x_1\rightarrow0}\left(\lim_{x_2\rightarrow0}f(x_1,x_2)\right) 	=\lim_{x_2\rightarrow0}\left(\lim_{x_1\rightarrow0}f(x_1,x_2)\right)=0 \end{array}

    bet {\lim_{x\rightarrow0}f(x)} neegzistuoja.

  8. Tegu {f:\mathbb{R}^2\rightarrow \mathbb{R}} ir

    \displaystyle  \begin{array}{rcl}  	 f(x_1,x_2)=(x_1+x_2)\sin\frac{1}{x_1}\sin\frac{1}{x_2}. 	\end{array}

    Parodyti, kad { 	\lim_{x_1\rightarrow0}\left(\lim_{x_2\rightarrow0}f(x_1,x_2)\right)} ir {\lim_{x_2\rightarrow0}\left(\lim_{x_1\rightarrow0}f(x_1,x_2)\right)} neegzistuoja, bet {\lim_{x\rightarrow 0}f(x)} egzistuoja.

  1. Tegu {f(x,y)=x^{2}e^{-(x^2-y)}}. Rasti funkcijos ribą bet kuriuo spinduliu {x=t\cos\alpha}, {y=t\sin\alpha}, kai {t\rightarrow\infty}. Ar galima šią funkciją pavadinti be galo maža, kai {x\rightarrow\infty}, {y\rightarrow\infty}? (T. y. ar {\lim_{(x,y)\rightarrow\infty}f(x,y)=0}?)
  2. Rasti ribas {\lim_{x\rightarrow a}\left(\lim_{y\rightarrow b}f(x,y)\right)} ir {\lim_{y\rightarrow b}\left(\lim_{x\rightarrow a}f(x,y)\right)}, kai
    1. {f(x,y)=\frac{x^2+y^2}{x^2+y^4}}, {a=\infty}, {b=\infty}
    2. {f(x,y)=\frac{x^y}{1+x^y}}, {a=\infty}, {b=+0}.
    3. {f(x,y)=\sin\frac{\pi x}{2x+y}}, {a=\infty}, {b=\infty}.
  3. Rasti ribą {\lim_{x\rightarrow\infty}\frac{x_1+x_2}{x_1^2-x_1x_2+x_2^2}}.
  4. Rasti ribą {\lim_{x\rightarrow(0,a)}\frac{\sin x_1x_2}{x_1}}.

Naujausi komentarai

vzemlys apie Rožiniai akiniai
Audrius apie Rožiniai akiniai
Karl apie Time series data aggregation u…
Vytautas Astrauskas apie Matematinio teksto rinkimo tur…
Auksinis kardas apie Drawing national flags on maps…
2020 m. gegužės mėn.
Pr A T K Pn Š S
 123
45678910
11121314151617
18192021222324
25262728293031